Basics of Programming. Introduction

Course Basics of Programming Semester 1, FIIT

Mayer Svetlana Fyodorovna

Nested loops

- To do: Calculate the value of the function $z(x, y)=x^{y}$ for every x changing in the interval [2;8], and y changing in the interval [2;5].
- The resulting example:

$$
\begin{aligned}
& z(x, y)=2^{\wedge} 2=4 \\
& z(x, y)=2^{\wedge} 3=8 \\
& z(x, y)=2^{\wedge} 4=16 \\
& z(x, y)=3^{\wedge} 2=9 \\
& z(x, y)=3^{\wedge} 3=27
\end{aligned}
$$

```
begin
for var }\textrm{x}:=2\mathrm{ to }8\mathrm{ do
    for var y:= 2 to 4 do
    begin
        var z:=power(x,y);
        writelnformat('z(x,y) = {0}^{1} = {2}',x,y,z);
    end;
end.
```

- We must create two for loops (nested loop): one loop within the other. Variable x has to be modified in the outer loop; variable y has to be modified in the inner loop.

Nested loops

- To do: The program must display the rows with the following sequences as in the example below. Use nested loops.
- The resulting example:

99999
88888
77777
66666
55555

```
begin
    for var x := 9 downto 5 do
    begin
        for var y := 1 to 5 do
        begin
            print(x)
        end;
        println;
    end
end.
```

- The outer for loop must iterate over the columns, the inner loop must iterate over the sequences within each row...

Tasks

- To do:
- Lesson \# 9, Tasks, nested loops: 1, 2, 3_0,3_1, 4, 5, 6

Boolean type (the problem of finding a value)

- To do: The values of n and k are entered. n numbers of the sequence are entered. The program should output if there is a number k among them
- Solution. Let's define a boolean variable exists. Initialize it to false value. In the loop, change it to true value if any number is equal to k .
- The resulting example: how many numbers? >>>5 what number must we find? >>>3 enter numbers, please 13647
there is 3 number: True

```
begin
    var n := ReadInteger('how many numbers?');
    var exists := false;
    var k := ReadInteger('what number must we find?');
    print('enter numbers, please');
    loop n do
    begin
        var x := ReadInteger;
        if }\textrm{x}=\textrm{k}\mathrm{ then
            exists := true;
    end;
    print ($'there is {k} number: ', exists)
end.
```


Break and continue

- When a break statement is encountered inside a loop, the loop is immediately terminated, and the program control resumes at the next statement following the loop.
- When a continue statement is encountered inside a loop, the current iteration of a loop is immediately terminated, and the program control resumes at the next loop iteration.
- break и continue statements can only be used inside loops

The example of using continue statement

- To do: print powers of 2 up to the 10th power, except 2^6.
- E.g.: 24816321282565121024
begin
var $a:=1$;
while $a<1000$ do
begin

$$
\begin{aligned}
& a:=a \star 2 \text {; } \\
& \text { if } a=64 \text { then }
\end{aligned}
$$

continue;
print(a);
end;
10 end.

The example of using continue statement

- in the example on the right you can see, that the using of continue gives a more readable code:

```
loop
    begin
        var x := ReadInteger;
        if p(x) then
        begin
            3 0 ~ s t a t e m e n t s
        end; // Oh! We're waiting!
    end;
```

```
loop
    begin
        var x := ReadInteger;
        if not(p(x)) then
            continue;
        30 statements
    end;
```


The problem of finding a value using break

- To do: The values of n and k are entered. n numbers of the sequence are entered. The program should output if there is a number k among them?
- Solution: If a value is found, we break off the loop

```
begin
    var n := ReadInteger('how many numbers?');
    var exists := false;
    var k := ReadInteger('what number must we find?');
    print('enter numbers, please');
    loop n do
    begin
        var x := ReadInteger;
        if }\textrm{x}=\textrm{k}\mathrm{ then
        exists := true;
    end;
    print ($'there is {k} number: ', exists)
end.
```

```
var Exists := False;
loop n do
begin
    var x := ReadInteger;
    if }x=k\mathrm{ then
    begin
        Exists := True;
        break;
    end;
end;
```


Tasks

- To do:
- Lesson \# 9, Tasks: 7

To do: 10 integers are generated in the range [$-3 ; 10]$. The program should output if there is at least one positive number among them?

The resulting example:
$5-279124609$
There is positive number: true

The Infinite Loop

```
while True do begin
    . . .
end;
```

while $x>0$ do begin

$$
y+=1 ;
$$

end;
repeat
until False;
repeat

$$
y+=1 ;
$$

until $x<=0$;

The Infinite Loop

- To do: A sequence of integers is given. The last number of the sequence is 0 (if 0 is entered the input of the numbers of the set is finished). The program must output the number of positive elements among the sequence.

Solution \# 1

```
begin
    var count:=0;
    var x:=readinteger;
    while x<>0 do
    begin
        if }x>0\mathrm{ then
        count+=1;
        x:=readinteger;
    end;
    print($'positive = {count}')
end.
```


Solution \# 2

```
begin
    var count := 0;
    while true do
    begin
        var x := readinteger;
        if }x=0\mathrm{ then
            break
            else if x > 0 then
            count += 1;
    end;
    print($'positive = {count}')
end.
```


Tasks

- To do:
- Lesson \# 9, Tasks infinite loops: 8, 9

Sum of digits of natural number

- To do: Natural number m is given. Calculate sum of its digits
- Solution: div / mod operations split the number on the series of its digits
var m := ReadInteger;
Assert (m>0) ;
var $s:=0$;
while $m>0$ do
begin

$$
\begin{aligned}
& \mathrm{s}+=\mathrm{m} \bmod 10 ; \\
& \mathrm{m}:=\mathrm{m} \operatorname{div} 10 ;
\end{aligned}
$$

end;

Number ot natural number digits satistying

some condition

- To do: Natural number m is given. How many "1" digits in its decimal representation does it have?

```
var m := ReadInteger;
Assert(m>0);
var count := 0;
while m > 0 do
begin
    if m mod 10=1 then
        count += 1;
    m := m div 10;
end;
```


Tasks

- To do:
- Lesson \# 9, Task 10, 11

Shift of a sequence elements

- To do: A sequence of integers is given. The last number of all the sequences is 0 (if 0 is entered the input of the numbers is finished). The program has to print 0 in the case when the sequence forms a non-increasing sequence of numbers, otherwise the program has to print the number 1 .
- The resulting example:
please, enter the sequence:
>>>1 >>>5 >>>9 >>>5 >>>0
output: 0 (non-increasing seque
+++++++++++++++++++++++++++
please, enter the sequence:
>>>1 >>>2 >>>5 >>>9 >>>11 >>>0
output: 1 (increasing sequence)

$\begin{array}{lllll}1 & 5 & 9 & 5 & 0\end{array}$

$\begin{array}{llllll}1 & 2 & 5 & 9 & 11 & 0\end{array}$

Solution 1

```
begin
println('please, enter the sequence, print 0 if you want to stop:');
    var a1:= readinteger; // 1-st element of the seq
    var a2:= readinteger; // 2-nd element of the seq
    var c := 1; // c = 1 if the sequence is increasing
    while a2 <> 0 do
    begin
        if a2 < a1 then // if non-increasing sequence
        begin
            writeln('element is less than the previous');
            c := 0 // non-increasing sequence
        end;
        a1 := a2; // shift of the elements
        read(a2); // input of the next element
    end;
    println('result = ', c)
end.
```


Shift of a sequence elements

To do: A sequence of integers is given. The last number of all the sequences is 0 (if 0 is entered the input of the numbers is finished). The program has to print 0 in the case when the sequence forms a non-increasing sequence of numbers, otherwise the program has to print the number 1.

The resulting example:

```
please, enter the sequence:
```

$\ggg 1 \quad \ggg 5 \quad \ggg 9 \quad \ggg 5 \quad \ggg 0$
output: 0 (non-increasing seque
$+++++++++++++++++++++++++++$
please, enter the sequence:
>>>1 >>>2 $\ggg 5$ >>>9 $\ggg 11$ >>>0
output: 1 (increasing sequence)
$\begin{array}{lllll}1 & 5 & 9 & 5 & 0\end{array}$
$\begin{array}{llllll}1 & 2 & 5 & 9 & 11 & 0\end{array}$

Solution 2

```
begin
    println('please, enter the sequence, print 0 if you want to stop:
    var al := integer.MaxValue; // 1-st element of the seq
    var a2: integer;
    var c := 1; // c = 1 if the sequence is increasing
    while al <> 0 do
    begin
        read(a2); // input of the next element
        if (a2 < a1) and (a1 <> integer.MaxValue) and (a2 <> 0) then
        begin
            c := 0 // non-increasing sequence
        end;
        a1 := a2; // shift of the elements
    end;
    println('result = ', c)
end.
```


Tasks

- To do:
- Lesson \# 9, Task 12, 13 (complex), 14 (complex), 15

Shift of a sequence elements

Fibonacci sequence:

1	1	2	3	5	8	13	21	34	55
a	b	$\mathrm{c}=\mathrm{a}+\mathrm{b}$							

- Rule: Each next number is equal to the sum of the two previous numbers
- Solution 1:

Shift of a sequence elements

Fibonacci sequence:

1	1	2	3	5	8	13	21	34	55
a	b	$\mathrm{c}=\mathrm{a}+\mathrm{b}$							

- Rule: Each next number is equal to the sum of the two previous numbers
- Solution 2 :

Tasks

- To do:
- Lesson \# 9, Task 14

GCD (a, b) - Greater Common Divisor

```
Example.
144 = 2*2*2*2*3*3 GCD (144,60) = 2*2*3 = 12
60 = 2*2*3*5
```

- The Euclidean Algorithm (3 century BC):

a	b	$c=a \bmod b$		
144	60	24	12	0

Solution.

var (a, b) := ReadInteger2;
Print (a, b);
var c:integer;
repeat
c : = a mod b;
Print(c);
a := b;
b : $=\mathrm{c}$;
until $\mathrm{b}=0$;
Print (c);

GCD (a, b) - Greater Common Divisor

Example.

```
\[
144=2^{*} 2^{*} 2^{*} 2^{*} 3^{*} 3
\]
\[
\operatorname{GCD}(144,60)=2 * 2 * 3=12
\]
```

$60=\mathbf{2 *} \mathbf{2}^{*} \mathbf{3}^{*} 5$

- The Euclidean Algorithm (3 century BC):

a	b	$c=a \bmod b$		
144	60	24	12	0

Solution 2.
var (a,b) := ReadInteger2;
Assert (b<>0) ;
repeat
var $c:=a \bmod b$;
$(\mathrm{a}, \mathrm{b}):=(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$;
until $\mathrm{b}=0$; Print (a);
tuple
12

Prime factorization

Example.

$144=2 * 2 * 2^{*} 2^{*} 3^{*} 3$

- Algorithm:
- i - is candidate to divisors
- First candidate: $\mathrm{i}=2$
- If x is divided by i , we print i and divide x by i
- If not, we increase iby 1 .
- The process stops when x becomes = 1

```
var x := ReadInteger;
Assert(x>=2);
var i := 2;
repeat
    if x mod i = 0 then
    begin
        Print(i);
        x := x div i;
    end
    else i += 1;
until x = 1;
144
2}22222%3
```


Is the number prime?

- To do: natural n is given. Is it prime?
- Solution. n is a prime number if it can only be divided by 1 and itself. If n is divisible by 2 .. $\mathrm{n}-1$, then this is a composite number

```
var IsPrime := True;
for var i:=2 to n-1 do
    if n mod i = 0 then
    begin
        IsPrime := False;
        break;
    end;
```


Q \& A

